DocumentCode :
3533146
Title :
Clinical dementia rating score prediction based on MR segmentation
Author :
Seixas, Flavio L. ; de Souza, A.S. ; Plastino, A. ; Saade, D. C M ; Conci, A.
Author_Institution :
Comput. Sci. Dept., Univ. Fed. Fluminense, Niteroi
fYear :
2008
fDate :
3-5 Nov. 2008
Firstpage :
113
Lastpage :
114
Abstract :
This work aims at predicting the clinical dementia rating (CDR) score with a fully automated human brain volumetric segmentation method based on anatomical atlas using magnetic resonance (MR) images. The CDR prediction method uses a Bayesian classifier considering 371 individuals. Practical results were assessed using the classifier true-positive rate. CDR score prediction can indicate an underlying neurodegenerative disorder, such as Alzheimerpsilas disease. Its early detection allows precocious therapeutic intervention and better clinical results.
Keywords :
Bayes methods; biomedical MRI; brain; data mining; diseases; image classification; image segmentation; medical image processing; neurophysiology; Bayesian classifier; MR segmentation; MRI; anatomical atlas; automated human brain volumetric segmentation method; automatic attribute selection method; clinical dementia rating score prediction; computer-aided diagnosis application; data mining classification method; magnetic resonance image; neurodegenerative disorder; precocious therapeutic intervention; Alzheimer´s disease; Anatomical structure; Bayesian methods; Brain modeling; Computer science; Dementia; Image segmentation; Magnetic resonance; Performance evaluation; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Bioinformatics and Biomeidcine Workshops, 2008. BIBMW 2008. IEEE International Conference on
Conference_Location :
Philadelphia, PA
Print_ISBN :
978-1-4244-2890-8
Type :
conf
DOI :
10.1109/BIBMW.2008.4686219
Filename :
4686219
Link To Document :
بازگشت