• DocumentCode
    35334
  • Title

    Optimality Claims for the FML Covariance Estimator with respect to Two Matrix Norms

  • Author

    Aubry, A. ; De Maio, A. ; Carotenuto, Vincenzo

  • Author_Institution
    IREA, Naples, Italy
  • Volume
    49
  • Issue
    3
  • fYear
    2013
  • fDate
    Jul-13
  • Firstpage
    2055
  • Lastpage
    2057
  • Abstract
    In this correspondence we prove two interesting properties of the fast maximum likelihood (FML) covariance matrix estimator proposed in [1] under the assumption of zero-mean complex circular Gaussian training data sharing the same covariance matrix. The new properties represent optimality claims regardless of the statistical characterization of the data and, in particular, of the multivariate Gaussian assumption for the observables. The optimality is proved with respect to two cost functions involving either the Frobenius or the spectral norm of an Hermitian matrix.
  • Keywords
    Gaussian processes; Hermitian matrices; covariance matrices; maximum likelihood estimation; radar signal processing; spectral analysis; FML covariance estimator; Frobenius norm; Hermitian matrix; cost functions; fast maximum likelihood covariance matrix estimator; matrix norms; multivariate Gaussian assumption; optimality claims; spectral norm; statistical data characterization; zero-mean complex circular Gaussian training data; Convex functions; Covariance matrices; Eigenvalues and eigenfunctions; Joints; Linear matrix inequalities; Maximum likelihood estimation; Vectors;
  • fLanguage
    English
  • Journal_Title
    Aerospace and Electronic Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9251
  • Type

    jour

  • DOI
    10.1109/TAES.2013.6558039
  • Filename
    6558039