DocumentCode :
3534749
Title :
Hierarchical GIS clustering using principal components
Author :
Dayal, Abhinav
Author_Institution :
IDV Solutions Inc.
Volume :
5
fYear :
2009
fDate :
12-17 July 2009
Abstract :
GIS point-clustering is an important feature in any GIS based data visualization application. Clustering not only condenses data into visualizable units, it also presents analytical tools for data study. In this paper we use principal components analysis of underlying point data to recursively find appropriate split boundaries and partition point data into a hierarchy of cluster regions. We then group each region into a cluster point using a closest-mean approach. The result is a very efficient O[n log(n)] algorithm of linear spatial complexity to build the hierarchy. Resulting hierarchy can give instant clusters at varying map scales with logarithmic complexity. Moreover, the output cluster points represent more naturally the point density.
Keywords :
computational complexity; data visualisation; geographic information systems; pattern clustering; principal component analysis; GIS point-clustering; data visualization application; geographic information system; linear spatial complexity; partition point data; principal components analysis; Binary trees; Clustering algorithms; Data analysis; Data mining; Data visualization; Displays; Geographic Information Systems; Partitioning algorithms; Principal component analysis; BSP; Clustering; GIS; principal components;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009
Conference_Location :
Cape Town
Print_ISBN :
978-1-4244-3394-0
Electronic_ISBN :
978-1-4244-3395-7
Type :
conf
DOI :
10.1109/IGARSS.2009.5417732
Filename :
5417732
Link To Document :
بازگشت