DocumentCode :
3534925
Title :
A data-centric system identification approach to input signal design for Hammerstein systems
Author :
Deshpande, S. ; Rivera, Daniel E.
Author_Institution :
Control Syst. Eng. Lab. (CSEL), Arizona State Univ., Tempe, AZ, USA
fYear :
2013
fDate :
10-13 Dec. 2013
Firstpage :
5192
Lastpage :
5197
Abstract :
This paper examines the design of input signals for identification of Hammerstein systems in a data-centric framework by addressing the optimal distribution of regressors. Data-centric estimation methods such as Model-on-Demand (MoD) generate local function approximations from a database of regressors at the current operating point. The data-centric input signal design formulation aims to develop sufficient support in the regressor space for the MoD estimator, while addressing time-domain constraints on the input and output signals. A numerical example is shown to highlight the benefit of proposed design over classical Pseudo Random Binary Sequence (PRBS), Multi Level Pseudo Random Sequence (MLPRS) and uniform random input designs.
Keywords :
estimation theory; identification; nonlinear dynamical systems; signal processing; time-domain analysis; Hammerstein systems; MLPRS; MoD estimator; PRBS; data-centric estimation methods; data-centric input signal design formulation; data-centric system identification approach; local function approximations; model-on-demand; multilevel pseudo random sequence; optimal regressor distribution; output signals; pseudorandom binary sequence; time-domain constraints; uniform random input designs; Bandwidth; Estimation; Optimization; Polynomials; Signal design; Standards; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
ISSN :
0743-1546
Print_ISBN :
978-1-4673-5714-2
Type :
conf
DOI :
10.1109/CDC.2013.6760705
Filename :
6760705
Link To Document :
بازگشت