• DocumentCode
    353540
  • Title

    Supervised classification using MCMC methods

  • Author

    Davy, Manuel ; Doncarli, Christian ; Tourneret, Jean-Yves

  • Author_Institution
    IRCyN, Nantes, France
  • Volume
    1
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    33
  • Abstract
    This paper addresses the problem of supervised classification using general Bayesian learning. General Bayesian learning consists of estimating the unknown class-conditional densities from a set of labelled samples. However, the estimation requires to evaluate intractable multidimensional integrals. This paper studies an implementation of general Bayesian learning based on Markov chain Monte Carlo (MCMC) methods
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; learning (artificial intelligence); learning systems; parameter estimation; signal classification; Bayesian learning; MCMC methods; Markov chain Monte Carlo methods; intractable multidimensional integrals; labelled samples; supervised classification; unknown class-conditional densities; Bayesian methods; Bismuth; Chirp; Closed-form solution; Decision theory; Monte Carlo methods; Multidimensional signal processing; Multidimensional systems; Probability density function; Supervised learning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
  • Conference_Location
    Istanbul
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-6293-4
  • Type

    conf

  • DOI
    10.1109/ICASSP.2000.861854
  • Filename
    861854