DocumentCode :
3537890
Title :
Robust interference identification for multi-RAT optimization in wireless cellular networks
Author :
Pollakis, E. ; Cavalcante, R.L.G. ; Stanczak, Slawomir ; Penna, Federico
Author_Institution :
Fraunhofer Inst. for Telecommun., Heinrich Hertz Inst., Berlin, Germany
fYear :
2012
fDate :
16-19 Oct. 2012
Firstpage :
284
Lastpage :
284
Abstract :
The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.
Keywords :
3G mobile communication; Long Term Evolution; cellular radio; learning (artificial intelligence); optimisation; radiofrequency interference; radiofrequency measurement; telecommunication computing; LTE networks; UMTS; cognitive interference identification techniques; interference measurements; interference patterns reconstruction; machine learning techniques; multiRAT optimization; robust interference identification; sparse pathloss; user information; wireless cellular networks; 3G mobile communication; Energy consumption; Interference; Optimization; Quality of service; Signal processing algorithms; Wireless communication;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Dynamic Spectrum Access Networks (DYSPAN), 2012 IEEE International Symposium on
Conference_Location :
Bellevue, WA
Print_ISBN :
978-1-4673-4447-0
Electronic_ISBN :
978-1-4673-4446-3
Type :
conf
DOI :
10.1109/DYSPAN.2012.6478147
Filename :
6478147
Link To Document :
بازگشت