DocumentCode :
3538198
Title :
Infinite horizon control and minimax observer design for linear DAEs
Author :
Zhuk, Sergiy ; Petreczky, Mihaly
Author_Institution :
IBM Res., Dublin, Ireland
fYear :
2013
fDate :
10-13 Dec. 2013
Firstpage :
7004
Lastpage :
7009
Abstract :
In this paper we construct an infinite horizon minimax state observer for a linear stationary differential-algebraic equation (DAE) with uncertain but bounded input and noisy output. We do not assume regularity or existence of a (unique) solution for any initial state of the DAE. Our approach is based on a generalization of Kalman´s duality principle. In addition, we obtain a solution of infinite-horizon linear quadratic optimal control problem for DAE.
Keywords :
differential algebraic equations; duality (mathematics); infinite horizon; linear quadratic control; minimax techniques; observers; Kalman duality principle; infinite horizon minimax state observer; infinite-horizon linear quadratic optimal control problem; linear DAE; linear stationary differential-algebraic equation; minimax observer design; Equations; Linear systems; Noise; Observers; Optimal control; Trajectory; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
ISSN :
0743-1546
Print_ISBN :
978-1-4673-5714-2
Type :
conf
DOI :
10.1109/CDC.2013.6760999
Filename :
6760999
Link To Document :
بازگشت