DocumentCode :
3538449
Title :
Global identifiability of a simple linear model for gene expression analysis
Author :
Helmke, U. ; Huper, Knut ; Khammash, Mustafa
Author_Institution :
Inst. for Math., Univ. of Wurzburg, Wurzburg, Germany
fYear :
2013
fDate :
10-13 Dec. 2013
Firstpage :
7149
Lastpage :
7154
Abstract :
Global parameter identifiability of time-invariant linear systems for continuous and sampled output measurements is characterized. New necessary and sufficient conditions for parameter identifiability for linear systems with constant inputs are derived. An application to global identifiability of low dimensional models for gene expression analysis is given.
Keywords :
Monte Carlo methods; genetics; linear systems; parameter estimation; time-varying systems; continuous output measurements; gene expression analysis; global parameter identifiability; sampled output measurements; simple linear model; time-invariant linear systems; Biological system modeling; Gene expression; Observability; Polynomials; Proteins; Stochastic processes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
ISSN :
0743-1546
Print_ISBN :
978-1-4673-5714-2
Type :
conf
DOI :
10.1109/CDC.2013.6761023
Filename :
6761023
Link To Document :
بازگشت