DocumentCode :
3538789
Title :
Multiscale stochastic watershed for unsupervised hyperspectral image segmentation
Author :
Angulo, J. ; Velasco-Forero, S. ; Chanussot, J.
Author_Institution :
CMM-Centre de Morphologie Math., MINES Paristech, Paris, France
Volume :
3
fYear :
2009
fDate :
12-17 July 2009
Abstract :
This paper deals with unsupervised segmentation of hyper-spectral images. It is based on the stochastic watershed, an approach to estimate a probability density function (pdf) of contours of an image using Monte Carlo simulations of watershed segmentations. In particular, it is introduced for the first time a multiscale framework for the computation of the pdf of contours using the stochastic watershed. Two multiscale approaches are considered: i) a linear scale-space using Gaussian filters, ii) a nonlinear morphological scale-space pyramid using levelings. In addition, a multiscale pyramid obtained by modifying the size of the random markers is also studied. Then, it is shown how the pdf of contours can finally be segmented using the non-parametric waterfalls algorithm. The performances of the proposed methods are compared using two examples of standard remote sensing hyperspectral images.
Keywords :
Monte Carlo methods; geophysical signal processing; image segmentation; remote sensing; Gaussian filters; PDF estimation; image contours; levelings; linear scale space; multiscale stochastic watershed; nonlinear morphological scale space pyramid; nonparametric waterfalls algorithm; probability density function; random marker size; remote sensing hyperspectral images; unsupervised hyperspectral image segmentation; watershed segmentation Monte Carlo simulations; Filters; Hyperspectral imaging; Hyperspectral sensors; Image segmentation; Multispectral imaging; Pixel; Probability density function; Remote sensing; Robustness; Stochastic processes; hyperspectral images; probabilistic hierarchical segmentation; stochastic watershed; unsupervised segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009
Conference_Location :
Cape Town
Print_ISBN :
978-1-4244-3394-0
Electronic_ISBN :
978-1-4244-3395-7
Type :
conf
DOI :
10.1109/IGARSS.2009.5418095
Filename :
5418095
Link To Document :
بازگشت