DocumentCode :
354031
Title :
Generalized predictive control based on error correction using the dynamic neural network
Author :
Xiaohua, Liu ; Xiuhong, Wang ; Wane Yunge
Author_Institution :
Yantai Teachers Univ., China
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
1863
Abstract :
Considering the influence of modelling error on the robustness of nonlinear predictive control, the paper proposes a generalized predictive control algorithm based on error correction using the dynamic backpropagation network, the algorithm has dynamic compensation capability so that the dynamic error of the model can be effectively reduced and the modelling accuracy can be raised. The simulation results show the algorithm is effective for nonlinear systems
Keywords :
backpropagation; compensation; error correction; neurocontrollers; nonlinear control systems; predictive control; robust control; dynamic backpropagation network; dynamic compensation capability; dynamic error; dynamic neural network; error correction; generalized predictive control; modelling accuracy; modelling error; nonlinear predictive control; robustness; Error correction; Heuristic algorithms; Neodymium; Neural networks; Nonlinear dynamical systems; Nonlinear systems; Predictive control; Predictive models; Robust control; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on
Conference_Location :
Hefei
Print_ISBN :
0-7803-5995-X
Type :
conf
DOI :
10.1109/WCICA.2000.862798
Filename :
862798
Link To Document :
بازگشت