DocumentCode :
3540479
Title :
The value of information in constrained parametric models
Author :
Moore, Terrence J. ; Sadler, Brian M.
Author_Institution :
Army Res. Lab., Adelphi, MD, USA
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
293
Lastpage :
296
Abstract :
We consider the value of information introduced through constraints on the parameters, by showing the Fisher information gain and the resulting Cramér-Rao bound (CRB) reduction. In doing so, we show that the constrained CRB (CCRB) can be found by a transformation of parameters or a projection onto the tangent of the constraint space. Finally, we determine the characteristics of optimal constraints that minimize the trace of the CCRB, thereby attaining the lowest bound on the sum of mean-square errors of unbiased estimators.
Keywords :
information theory; least mean squares methods; Cramer-Rao bound reduction; Fisher information gain; constrained parametric models; mean-square errors; unbiased estimators; Eigenvalues and eigenfunctions; Jacobian matrices; Maximum likelihood estimation; Mean square error methods; Parametric statistics; Vectors; CCRB; CRB; Fisher information; equality constraints; parametric models; value of information;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319685
Filename :
6319685
Link To Document :
بازگشت