DocumentCode :
3541055
Title :
A non-parametric Bayesian clustering for gene expression data
Author :
Wang, Liming ; Wang, Xiaodong
Author_Institution :
Dept. of Electr. Eng., Columbia Univ., New York, NY, USA
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
556
Lastpage :
559
Abstract :
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this paper, we propose a non-parametric Bayesian clustering algorithm based on the hierarchical Dirichlet processes (HDP). The proposed clustering algorithm captures the hierarchical features prevalent in biological data such as the gene express data by introducing a hierarchical structure in the model. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor. We conduct experiments on the yeast galactose datasets and yeast cell cycle datasets by comparing our clustering results to the standard results. The proposed clustering algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. The experiments also show that the proposed clustering algorithm provides more information and reduces the unnecessary clustering fragments than the clustering algorithm based on Dirichlet mixture model.
Keywords :
Bayes methods; data structures; genomics; lab-on-a-chip; pattern clustering; sampling methods; Chinese restaurant metaphor-based Gibbs sampling algorithm; Dirichlet mixture model-based clustering algorithm; HDP; biological data; data processing tool; gene expression data; hierarchical Dirichlet processes; hierarchical data structure; hierarchical features; hierarchical structure; microarray data interpretation; nonparametric Bayesian clustering; yeast cell cycle datasets; yeast galactose datasets; Bayesian methods; Biological system modeling; Clustering algorithms; Indexes; Inference algorithms; Signal processing algorithms; Dirichlet processes; Hierarchical Dirichlet processes; clustering; microarray data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319758
Filename :
6319758
Link To Document :
بازگشت