DocumentCode :
3541203
Title :
Multiscale online tracking of manifolds
Author :
Xie, Yao ; Huang, Jiaji ; Willett, Rebecca
Author_Institution :
Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
620
Lastpage :
623
Abstract :
This paper describes a Multiscale Online Union of Sub-Spaces Estimation (MOUSSE) algorithm for online tracking of a time-varying manifold. MOUSSE uses linear subsets of low-dimensional hyperplanes to approximate a manifold embedded in a high-dimensional space. Each subset corresponds to the leaf node in a binary tree which encapsulates the multiresolution analysis underlying the proposed algorithm. The tree structure and parameters of the subsets are estimated and sequentially updated using a stream of noisy samples. For each update, MOUSSE requires only simple linear computations. The update of each hyperplane in the estimate is computed via gradient descent on the Grassmannian manifold. Numerical simulations demonstrate the strong performance of MOUSSE in tracking a time-varying manifold.
Keywords :
gradient methods; tree data structures; Grassmannian manifold; MOUSSE; binary tree; gradient descent; hyperplanes; multiresolution analysis; multiscale online tracking; multiscale online union; numerical simulation; subspace estimation algorithm; time varying manifold; tree structure; Approximation algorithms; Approximation methods; Covariance matrix; Estimation; Indexes; Manifolds; Signal processing algorithms; Multiscale analysis; low-dimensional approximation; manifold learning; online tracking; tree structure;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319777
Filename :
6319777
Link To Document :
بازگشت