DocumentCode :
3541583
Title :
Experimental validation of a random matrix theory model for dominant mode rejection beamformer notch depth
Author :
Wage, Kathleen E. ; Buck, John R. ; Dzieciuch, Matthew A. ; Worcester, Peter F.
Author_Institution :
ECE Dept., George Mason Univ., Fairfax, VA, USA
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
816
Lastpage :
819
Abstract :
Adaptive beamformers attempt to eliminate loud interferers in order to facilitate the detection of quiet sources. The Dominant Mode Rejection (DMR) beamformer does this by placing notches in its beampattern corresponding to signals contained in the interference subspace. This subspace is defined by the eigenvectors associated with the largest eigenvalues of the sample covariance matrix. A companion paper derives an analytical model for the notch depth of the DMR beamformer using results from random matrix theory (RMT) on the statistics of the sample eigenvectors. This paper explores the validity of the DMR notch depth model using data from the 2010 Philippine Sea experiment. The measured average notch depths agree with the predictions of the RMT model.
Keywords :
array signal processing; covariance matrices; eigenvalues and eigenfunctions; interference suppression; random processes; 2010 Philippine Sea experiment; DMR; RMT; adaptive beamformer; covariance matrix; dominant mode rejection beamformer notch depth; eigenvalue; eigenvector; interference subspace; loud interference elimination; quiet source detection; random matrix theory model; Arrays; Covariance matrix; Eigenvalues and eigenfunctions; Interference; Noise; Predictive models; Vectors; adaptive beamforming; dominant mode rejection; random matrix theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319830
Filename :
6319830
Link To Document :
بازگشت