DocumentCode :
3542352
Title :
Model-based fault diagnosis of a DC-DC boost converters using hidden Markov model
Author :
Hafizi, M. Hadi ; Izadian, Afshin
Author_Institution :
Sch. of Eng. & Technol., Energy Syst. & Power Electron. Lab., Purdue Univ., Indianapolis, IN, USA
fYear :
2013
fDate :
9-11 May 2013
Firstpage :
1
Lastpage :
4
Abstract :
This paper introduces a hidden Markov model (HMM)-based fault diagnosis technique for DC-DC boost converter. Four HMMs are trained to model parameter variations in the power converters. Each HMM is created based on 14 visible states, which generates probability of each time step matching a signature fault pattern. The proposed method can cover multiple faults that may occur in any element of power electronic circuits. It can also achieve high precision of diagnosing for pre-defined faults in real-time. The simulation results demonstrate an accurate diagnosis performance using HMMs.
Keywords :
DC-DC power convertors; fault diagnosis; hidden Markov models; DC-DC boost converter; hidden Markov model; model based fault diagnosis; parameter variation; signature fault pattern; Circuit faults; Fault diagnosis; Hidden Markov models; Integrated circuit modeling; Markov processes; Mathematical model; Power electronics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electro/Information Technology (EIT), 2013 IEEE International Conference on
Conference_Location :
Rapid City, SD
ISSN :
2154-0357
Print_ISBN :
978-1-4673-5207-9
Type :
conf
DOI :
10.1109/EIT.2013.6632695
Filename :
6632695
Link To Document :
بازگشت