Title : 
Optimal Inequality Factor for Ehrlich-Aberth´s Method
         
        
            Author : 
Cira, Octavian ; Maruster, S.
         
        
            Author_Institution : 
Fac. of Exact Sci., Aurel Vlaicu Univ., Arad, Romania
         
        
        
        
        
        
            Abstract : 
The convergence condition for the simultaneous inclusion methods is w(0) <; cnd(0), where w(0) is the maximum Weierstrass factor Wk(0), k ∈In, and d(0) is the minimum distance between z1(0), z2(0), ...zn(0), the distinct approximations of the simple roots of the polynomial ζ1, ζ2, ...ζn. The i-factor (inequality-factor) is the positive function cn = c(a,b, n) = 1/an+b. The article presents the optimum i- factor for the simultaneous inclusion Ehrlich-Aberth´s method.
         
        
            Keywords : 
convergence of numerical methods; polynomial approximation; Ehrlich-Aberth method; convergence condition; distinct approximation; i-factor; maximum Weierstrass factor; optimal inequality factor; polynomial roots; simultaneous inclusion method; Approximation methods; Convergence; Educational institutions; Electronic mail; Iterative methods; Polynomials;
         
        
        
        
            Conference_Titel : 
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th International Symposium on
         
        
            Conference_Location : 
Timisoara
         
        
            Print_ISBN : 
978-1-4673-0207-4
         
        
        
            DOI : 
10.1109/SYNASC.2011.8