Title :
Wavelet features for statistical object localization without segmentation
Author :
Posl, Josef ; Niemann, Heinrich
Author_Institution :
Lehrstuhl fur Mustererkennung, Erlangen-Nurnberg Univ., Germany
Abstract :
This paper describes a new technique for statistical 3-D object localization. Local feature vectors are extracted for all image positions, in contrast to segmentation in classical schemes. We define a density function for those features and describe a hierarchical pose estimation scheme for the localization of a single object in a scene with arbitrary background. We show how the global pose search on the starting level of the hierarchy can be computed efficiently. The paper compares different wavelet transformations used for feature extraction
Keywords :
feature extraction; parameter estimation; probability; search problems; statistical analysis; wavelet transforms; background; global pose search; hierarchical pose estimation; image positions; local feature vectors extraction; probability density function; starting level; statistical 3D object localization; wavelet features; wavelet transformations; Density functional theory; Feature extraction; Image recognition; Image segmentation; Infrared detectors; Layout; Object recognition; Random variables; Speech; Statistical analysis;
Conference_Titel :
Image Processing, 1997. Proceedings., International Conference on
Conference_Location :
Santa Barbara, CA
Print_ISBN :
0-8186-8183-7
DOI :
10.1109/ICIP.1997.632041