DocumentCode :
3544090
Title :
Quantization errors in committee machine for gas sensor applications
Author :
Shi, Minghua ; Brahim-Belhouari, Sofiane ; Bermak, Amine
Author_Institution :
Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
fYear :
2005
fDate :
23-26 May 2005
Firstpage :
1911
Abstract :
In a digital implementation of a gas identification system, the mapping of continuous real parameter values into a finite set of discrete values introduces an error into the system. This paper presents the results of an investigation into the effects of parameter quantization on different classifiers (KNN, MLP and GMM). We propose a committee machine to decrease the classification performance degradation due to the quantization errors. The simulation results show that the committee machine always outperforms a single classifier and the gain in classification performance is greater for a reduced number of bits.
Keywords :
Gaussian distribution; gas sensors; measurement errors; multilayer perceptrons; pattern classification; quantisation (signal); GMM; Gaussian mixture models; K nearest neighbor classifier; KNN; MLP; committee machine; continuous real parameter quantization; gas identification system; gas sensors; multilayer perceptron; pattern classifiers; quantization errors; Degradation; Fabrication; Gas detectors; Hardware; Microelectronics; Nearest neighbor searches; Pattern recognition; Performance gain; Quantization; Sensor arrays; committee machine; gas sensors; quantization error;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on
Print_ISBN :
0-7803-8834-8
Type :
conf
DOI :
10.1109/ISCAS.2005.1464986
Filename :
1464986
Link To Document :
بازگشت