DocumentCode :
3544935
Title :
Query and Topic Sensitive PageRank for general documents
Author :
Hatakenaka, Shota ; Miura, Takao
Author_Institution :
Dept..of Electr. & Electr. Eng., HOSEI Univ., Tokyo, Japan
fYear :
2012
fDate :
28-28 Sept. 2012
Firstpage :
97
Lastpage :
101
Abstract :
In this work, we discuss both Query-Sensitive and Topic-Sentive Ranking algorithm, called Topic-Driven PageRank (TDPR), to inquire general documents based on a notion of importance. The main idea is that we extract knowledge from training data for multiple classification and build characteristic feature for each topic. By this approach, we get documents reflecting queries and topics within so that we can improve query results and to avoid topic-drift problems.
Keywords :
classification; document handling; query processing; search engines; TDPR; classification; general document; information retrieval; query result; query-sensitive ranking algorithm; topic-driven PageRank; topic-sentive ranking algorithm; Economics; Feature extraction; Games; Training; Training data; Vectors; Information Retrieval; Ranking; Topic Sensitive and Query Sensitive PageRank;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Systems Evolution (WSE), 2012 14th IEEE International Symposium on
Conference_Location :
Trento
ISSN :
2160-6153
Print_ISBN :
978-1-4673-3057-2
Type :
conf
DOI :
10.1109/WSE.2012.6320539
Filename :
6320539
Link To Document :
بازگشت