DocumentCode :
3546822
Title :
An automated volumetric segmentation system combining multiscale and statistical reasoning
Author :
Montgomery, David W G ; Amira, Abbes ; Murtagh, Fionn
Author_Institution :
Sch. of Comput. Sci., Queen´´s Univ., Belfast, UK
fYear :
2005
fDate :
23-26 May 2005
Firstpage :
3789
Abstract :
An automated volumetric image segmentation algorithm is proposed. This method is fast and unsupervised, automatically estimating required parameters including optimal segment number selection using Bayesian inference. In the wavelet domain, Gaussian mixture modeling (GMM) is used to achieve a baseline scene estimate. This estimate is then refined to consider spatial correlations using a Markov random field model (MRFM). The application of this system to three-dimensional biomedical image volumes is discussed. This approach delivers promising results in terms of the identification of inherent image features.
Keywords :
Bayes methods; Gaussian processes; Markov processes; biomedical MRI; feature extraction; image recognition; image segmentation; inference mechanisms; medical image processing; object recognition; positron emission tomography; Bayesian inference; GMM; Gaussian mixture modeling; MRFM; MRI data; Markov random field model; PET image volumes; automated volumetric image segmentation algorithm; automated volumetric segmentation system; automatic parameter estimation; baseline scene estimate; fast unsupervised method; inherent image features identification; multiscale reasoning; optimal segment number selection; spatial correlations; statistical reasoning; three-dimensional biomedical image volumes; wavelet domain; Bayesian methods; Biomedical imaging; Computer science; Humans; Image analysis; Image coding; Image resolution; Image segmentation; Pixel; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on
Print_ISBN :
0-7803-8834-8
Type :
conf
DOI :
10.1109/ISCAS.2005.1465455
Filename :
1465455
Link To Document :
بازگشت