DocumentCode :
3547131
Title :
A residue to binary converter for a balanced moduli set {22n+1 − 1, 22n, 22n − 1}
Author :
Bankas, Edem Kwedzo ; Gbolagade, Kazeem Alagbe
Author_Institution :
Dept. of Comput. Sci., Univ. for Dev. Studies, Navrongo, Ghana
fYear :
2013
fDate :
2-4 Nov. 2013
Firstpage :
211
Lastpage :
216
Abstract :
In this paper, we propose a new moduli set {22n+1 - 1, 22n;22n - l} with its associated reverse converter. The proposed reverse converter is based on Mixed Radix Conversion (MRC). In addition to parallelizing and optimizing the MRC algorithm, the resulting architecture is further simplified in order to obtain a reverse converter that utilizes only 2 levels of Carry Save Adders and three Carry Propagate Adders. The proposed converter is purely adder based and memoryless. Our proposal has a delay of (10n + 4)tfa + 2tmUx with an area cost of (12n + 2)FAs and (2n)H As, which when expressed in terms of HA is (22n + 4), where FA, HA, and tfa represent Full Adder, Half Adder, and delay of a Full Adder, respectively. The proposed scheme is compared with state of the art similar dynamic range converters. Theoretically speaking, our proposal achieves about 62.3% hardware reduction and about 2.13% speed improvement when compared with the reverse converter for {2n + 1,2n 1, 22n+1 - 3, 22n - 2}. Also, in comparison with the converter for {2n - 1, 2n - 1, 22n+1 - l}, the results indicate that, our proposal is about 17.05% faster, but requires about 7.83% more hardware resources. Further, the area time square (ΔT2) metric indicates that our proposed converter is 62.3% and 24.77% better than the state of the art reverse converters for {2n + 1,2n - 1, 22n+1 - 3, 22n - 2} and {2n - 1, 2n + 1, 22n, 22n+1 - l} respectively.
Keywords :
adders; carry logic; residue number systems; MRC algorithm optimization; MRC algorithm parallelization; associated reverse converter; balanced moduli set; carry propagate adders; carry save adders; full adder; half adder; mixed radix conversion; residue to binary converter; Adders; Delays; Dynamic range; Hardware; Proposals; Dynamic Range; Mixed Radix Conversion; Moduli Set; Residue Number System; Reverse Converter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Awareness Science and Technology and Ubi-Media Computing (iCAST-UMEDIA), 2013 International Joint Conference on
Conference_Location :
Aizuwakamatsu
Type :
conf
DOI :
10.1109/ICAwST.2013.6765435
Filename :
6765435
Link To Document :
بازگشت