DocumentCode :
3549118
Title :
Higher order whitening of natural images
Author :
Gluckman, Joshua
Author_Institution :
Dept. of Comput. Sci., Polytech. Univ. Brooklyn, NY, USA
Volume :
2
fYear :
2005
fDate :
20-25 June 2005
Firstpage :
354
Abstract :
Natural images are approximately scale invariant resulting in long range statistical regularities that typically obey a power law. For example, images have considerable regularity in their second order spatial correlations as measured by the power spectrum. Processing images to remove these expected correlations is known as whitening an image. Because the expected value of the power spectrum has a regular form (a power law) linear processing such as convolution can be used to whiten an image. After whitening an image, higher order regularities that cannot be removed with linear processing still exist in the form of correlations in the magnitude. In this paper it is shown that these correlations also obey a power law and a non-linear method is used to remove them, a process referred to as higher order whitening. The method is invertible demonstrating that while redundancy is removed no information is lost. Experiments are given showing that after higher order whitening the coefficients can be severely quantized yet a good reconstruction is possible despite the nonlinearities.
Keywords :
convolution; correlation methods; image coding; image reconstruction; image resolution; natural scenes; statistical analysis; convolution; natural image whitening; power law; power spectrum; spatial correlations; Autocorrelation; Computer science; Convolution; Higher order statistics; Image reconstruction; Impedance matching; Information theory; Layout; Physics; Power measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-2372-2
Type :
conf
DOI :
10.1109/CVPR.2005.175
Filename :
1467464
Link To Document :
بازگشت