DocumentCode :
3549998
Title :
Stabilizing synchronization control of magnetic bearing-based flywheel energy storage systems
Author :
Xiao, Y. ; Zhu, K.Y. ; Zhang, C. ; Tseng, K.J. ; Ling, K.V.
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore
Volume :
3
fYear :
2004
fDate :
6-9 Dec. 2004
Firstpage :
1711
Abstract :
With the advances of high strength/light weight composite material, high performance magnetic bearings, and power electronics technology, flywheel energy storage systems (FESS) are becoming an exciting alternative to traditional battery systems. One of the challenging problems of the FESS is to stabilize the rotor which is very sensitive to outside disturbances and plant uncertainties. In this paper, a stabilizing synchronization design of the FESS is proposed by incorporating cross-coupling technology into the optimal control architecture, which can be decomposed into two problems: a robust optimal control problem to improve the synchronization performance of the rotor in the radial directions and a stability problem. The control scheme is based on minimization of a new quadratic performance index in which the synchronization errors are embedded. Stability of the control scheme is investigated through linear quadratic Gaussian (LQG) optimal control technique. It is shown that with adequate control parameters the resulting control system can provide satisfactory synchronization performance, and the closed-loop stability can be guaranteed theoretically. Simulations on a compact and efficient flywheel energy storage system with integrated magnetic bearings demonstrate that the proposed approach is very effective to recover the unstable system when outside disturbances are present.
Keywords :
closed loop systems; flywheels; linear quadratic Gaussian control; machine control; magnetic bearings; robust control; rotors; synchronisation; closed-loop stability; cross-coupling technology; linear quadratic Gaussian optimal control; magnetic bearing-based flywheel energy storage systems; quadratic performance index; robust optimal control; rotor stabilization; stabilizing synchronization control; Batteries; Composite materials; Control systems; Energy storage; Flywheels; Magnetic levitation; Optimal control; Power electronics; Robust stability; Rotors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th
Print_ISBN :
0-7803-8653-1
Type :
conf
DOI :
10.1109/ICARCV.2004.1469416
Filename :
1469416
Link To Document :
بازگشت