Title :
An adaptive filtering approach to target tracking
Author :
Madyastha, Venkatesh K. ; Calise, Anthony J.
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Abstract :
A method is presented for augmenting an extended Kalman filter with an adaptive element. The resulting estimator provides robustness to parameter uncertainty and unmodeled dynamics. The design of the adaptive element employs a linearly parameterized neural network. The network weights are adjusted on line using the filter error residuals. Boundedness of signals is proven using Lyapunov´s direct method and a backstepping argument. Simulations illustrate the theoretical results.
Keywords :
Lyapunov methods; adaptive Kalman filters; neural nets; nonlinear filters; state estimation; target tracking; Lyapunov direct method; adaptive filtering; extended Kalman filter; filter error residuals; linearly parameterized neural network; parameter uncertainty; target tracking; unmodeled dynamics; Adaptive filters; Aerospace engineering; Neural networks; Parameter estimation; Robustness; State estimation; Stochastic systems; Target tracking; Uncertain systems; Vehicles;
Conference_Titel :
American Control Conference, 2005. Proceedings of the 2005
Print_ISBN :
0-7803-9098-9
Electronic_ISBN :
0743-1619
DOI :
10.1109/ACC.2005.1470139