DocumentCode :
3550731
Title :
An adaptive filtering approach to target tracking
Author :
Madyastha, Venkatesh K. ; Calise, Anthony J.
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2005
fDate :
8-10 June 2005
Firstpage :
1269
Abstract :
A method is presented for augmenting an extended Kalman filter with an adaptive element. The resulting estimator provides robustness to parameter uncertainty and unmodeled dynamics. The design of the adaptive element employs a linearly parameterized neural network. The network weights are adjusted on line using the filter error residuals. Boundedness of signals is proven using Lyapunov´s direct method and a backstepping argument. Simulations illustrate the theoretical results.
Keywords :
Lyapunov methods; adaptive Kalman filters; neural nets; nonlinear filters; state estimation; target tracking; Lyapunov direct method; adaptive filtering; extended Kalman filter; filter error residuals; linearly parameterized neural network; parameter uncertainty; target tracking; unmodeled dynamics; Adaptive filters; Aerospace engineering; Neural networks; Parameter estimation; Robustness; State estimation; Stochastic systems; Target tracking; Uncertain systems; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2005. Proceedings of the 2005
ISSN :
0743-1619
Print_ISBN :
0-7803-9098-9
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2005.1470139
Filename :
1470139
Link To Document :
بازگشت