Title :
Image Modeling and Denoising With Orientation-Adapted Gaussian Scale Mixtures
Author :
Hammond, David K. ; Simoncelli, Eero P.
Author_Institution :
Ecole Polytech. Fed. de Lausanne, Lausanne
Abstract :
We develop a statistical model to describe the spatially varying behavior of local neighborhoods of coefficients in a multiscale image representation. Neighborhoods are modeled as samples of a multivariate Gaussian density that are modulated and rotated according to the values of two hidden random variables, thus allowing the model to adapt to the local amplitude and orientation of the signal. A third hidden variable selects between this oriented process and a nonoriented scale mixture of Gaussians process, thus providing adaptability to the local orientedness of the signal. Based on this model, we develop an optimal Bayesian least squares estimator for denoising images and show through simulations that the resulting method exhibits significant improvement over previously published results obtained with Gaussian scale mixtures.
Keywords :
Bayes methods; Gaussian processes; image denoising; image representation; Bayesian least squares estimator; hidden random variables; image denoising; image modeling; multiscale image representation; multivariate Gaussian density; orientation-adapted Gaussian scale mixtures; statistical model; Additive noise; Amplitude modulation; Bayesian methods; GSM; Gaussian processes; Image processing; Image representation; Noise reduction; Random variables; Signal processing; Gaussian Scale Mixtures; image denoising; image processing; statistical image modeling; wavelet transforms;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2008.2004796