DocumentCode :
3559020
Title :
KUPS: Knowledge-based ubiquitous and persistent sensor networks for threat assessment
Author :
Liang, Qilian ; Cheng, Xiuzhen
Author_Institution :
Univ. of Texas at Arlington, Arlington, TX
Volume :
44
Issue :
3
fYear :
2008
fDate :
7/1/2008 12:00:00 AM
Firstpage :
1060
Lastpage :
1069
Abstract :
We propose a knowledge-based ubiquitous and persistent sensor network (KUPS) for threat assessment, in which "sensor" is a broad characterization. It refers to diverse data or information from ubiquitous and persistent sensor sources such as organic sensors and human intelligence sensors. Our KUPS for threat assessment consists of two major steps: situation awareness using fuzzy logic systems (FLSs) and threat parameter estimation using radar sensor networks (RSNs). Our FLSs combine the linguistic knowledge from different intelligent sensors, and our proposed maximum-likelihood (ML) estimation algorithm performs target radar cross section (RCS) parameter estimation. We also show that our ML estimator is unbiased and the variance of parameter estimation matches the Cramer-Rao lower bound (CRLB) if the radar pulses follow the Swerling II model. Simulations further validate our theoretical results.
Keywords :
fuzzy logic; maximum likelihood estimation; radar signal processing; Cramer Rao lower bound; KUPS; Swerling II model; fuzzy logic systems; knowledge based ubiquitous and persistent sensor network; maximum likelihood estimation; parameter estimation; radar cross section; radar pulses; radar sensor networks; threat assessment; Automatic control; Fuzzy logic; Humans; Intelligent sensors; Maximum likelihood estimation; Parameter estimation; Propagation delay; Radar cross section; Sensor phenomena and characterization; Sensor systems;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
Conference_Location :
7/1/2008 12:00:00 AM
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2008.4655363
Filename :
4655363
Link To Document :
بازگشت