Title :
Necessary and Sufficient Convergence Conditions for Algebraic Image Reconstruction Algorithms
Author :
Qu, Gangrong ; Wang, Caifang ; Jiang, Ming
Author_Institution :
Sch. of Sci., Beijing Jiaotong Univ., Beijing
Abstract :
The Landweber scheme is an algebraic reconstruction method and includes several important algorithms as its special cases. The convergence of the Landweber scheme is of both theoretical and practical importance. Using the singular value decomposition (SVD), we derive an iterative representation formula for the Landweber scheme and consequently establish the necessary and sufficient conditions for its convergence. In addition to verifying the necessity and sufficiency of known convergent conditions, we find new convergence conditions allowing relaxation coefficients in an interval not covered by known results. Moreover, it is found that the Landweber scheme can converge within finite iterations when the relaxation coefficients are chosen to be the inverses of squares of the nonzero singular values. Furthermore, the limits of the Landweber scheme in all convergence cases are shown to be the sum of the minimum norm solution of a weighted least-squares problem and an oblique projection of the initial image onto the null space of the system matrix.
Keywords :
image reconstruction; least squares approximations; matrix algebra; singular value decomposition; Landweber scheme; algebraic image reconstruction algorithms; iterative representation formula; minimum norm solution; singular value decomposition; system matrix; weighted least-squares problem; Image reconstruction; singular value decomposition (SVD); the Landweber scheme; weighted least-squares; Algorithms; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Statistical; Reproducibility of Results; Sensitivity and Specificity;
Journal_Title :
Image Processing, IEEE Transactions on
Conference_Location :
12/12/2008 12:00:00 AM
DOI :
10.1109/TIP.2008.2008076