• DocumentCode
    3559503
  • Title

    Improving Reliability Assessment of Transformer Thermal Top-Oil Model Parameters Estimated From Measured Data

  • Author

    Jauregui-Rivera, Lida ; Mao, Xiaolin ; Tylavsky, Daniel J.

  • Author_Institution
    Arizona Public Service, Phoenix, AZ
  • Volume
    24
  • Issue
    1
  • fYear
    2009
  • Firstpage
    169
  • Lastpage
    176
  • Abstract
    This paper presents a methodology for assessing the reliability of thermal-model parameters for transformers estimated from measured data. The methodology uses statistical bootstrapping to calculate confidence levels (CL) and confidence intervals (CI). Bootstrapping allows us to make a small dataset look statistically larger, which allows a precise estimate of the transformer thermal model´s reliability. The proposed methodology is tested on a 167-MVA oil-forced air-forced transformer. The CIs are evaluated with and without bootstrapping and the reliability indices are compared. The results show that the CI and CL values with bootstrapping are more consistently reproducible than the ones derived without bootstrapping.
  • Keywords
    bootstrapping; least squares methods; power system reliability; power transformer testing; transformer oil; confidence intervals; confidence levels; least squares regression; parameter estimation; reliability assessment; statistical bootstrapping; transformer thermal top-oil model parameters; Bootstrapping; confidence intervals (CIs); confidence levels (CLs); least squares regression; parameter estimation; top-oil temperature; transformer thermal modeling;
  • fLanguage
    English
  • Journal_Title
    Power Delivery, IEEE Transactions on
  • Publisher
    ieee
  • Conference_Location
    12/12/2008 12:00:00 AM
  • ISSN
    0885-8977
  • Type

    jour

  • DOI
    10.1109/TPWRD.2008.2005686
  • Filename
    4711082