DocumentCode :
3560126
Title :
High Sensitivity Spin Valve Sensors With AF Coupled Flux Guides
Author :
Trindade, I.G. ; Teixeira, J. ; Fermento, R. ; Sousa, J.B. ; Cardoso, S. ; Chaves, R.C. ; Freitas, P.P.
Author_Institution :
Fac. de Cienc., Phys. Dept., Univ. do Porto, Porto
Volume :
44
Issue :
11
fYear :
2008
Firstpage :
2472
Lastpage :
2474
Abstract :
Giant magnetoresistive (GMR) sensors can have their field sensitivity enhanced by many fold if located in the gap of two magnetically soft flux-guides (FG). In this paper, we present spin valve (SV) sensors, with saturation fields of less than 3 Oe and high linearity characterized by coercive forces of less than 0.5 Oe. FG require magnetically soft thin films with thicknesses in the range of 100-500 nm . In previous work, we prepared single-layer (SL) films of amorphous Co 90.7(Zr-Nb)9.3 that exhibited stripe domains (SD) when patterned into FG, causing Barkhausen noise and complete lost of linearity in the SV sensors response. In this article, single layer films of an amorphous alloy of Co88.4Zr3.3Nb8.3 , patterned into flux guides, do not exhibit SD but well-behaved closure domains. Nevertheless, these induce hysteresis in the sensors response, characterized by a coercive force of 0.7 Oe. This hypothesis is corroborated by focused beam magneto-optic Kerr effect (MOKE) magnetometry, performed in the poles region the CZN FG. By contrast, FG integrating instead multilayer (ML) thin films consisting of ferromagnetic layers of permalloy weakly anti-ferromagnetically (AF) coupled through Ru interlayers cause a strong reduction of hysteresis in the SV sensors response. The sensors in the gap of AF coupled (NiFe/Ru)xn FG, exhibit saturation fields of about 2 Oe and coercive forces of 0.3 Oe, despite the fact that the isolated sensors exhibit coercive forces of 2 Oe.
Keywords :
Barkhausen effect; Kerr magneto-optical effect; Permalloy; amorphous magnetic materials; cobalt alloys; coercive force; ferromagnetic materials; giant magnetoresistance; magnetic hysteresis; magnetic multilayers; magnetic sensors; magnetic thin films; niobium alloys; spin valves; zirconium alloys; Barkhausen noise; Co88.4Zr3.3Nb8.3; GMR; MOKE; amorphous alloy; antiferromagnetically coupled flux guides; coercive forces; ferromagnetic layers; field sensitivity; focused beam magneto-optic Kerr effect magnetometry; giant magnetoresistive sensors; high sensitivity spin valve sensors; hysteresis; magnetically soft flux-guides; magnetically soft thin films; multilayer thin films; permalloy; saturation fields; single-layer films; size 100 nm to 500 nm; stripe domains; Antiferromagnetic coupling; flux-fuides; multilayer thin films;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2008.2002602
Filename :
4717464
Link To Document :
بازگشت