DocumentCode :
3560525
Title :
Unsupervised Organization of Image Collections: Taxonomies and Beyond
Author :
Bart, Evgeniy ; Welling, Max ; Perona, Pietro
Author_Institution :
Palo Alto Res. Center, Palo Alto, CA, USA
Volume :
33
Issue :
11
fYear :
2011
Firstpage :
2302
Lastpage :
2315
Abstract :
We introduce a nonparametric Bayesian model, called TAX, which can organize image collections into a tree-shaped taxonomy without supervision. The model is inspired by the Nested Chinese Restaurant Process (NCRP) and associates each image with a path through the taxonomy. Similar images share initial segments of their paths and thus share some aspects of their representation. Each internal node in the taxonomy represents information that is common to multiple images. We explore the properties of the taxonomy through experiments on a large (~104) image collection with a number of users trying to locate quickly a given image. We find that the main benefits are easier navigation through image collections and reduced description length. A natural question is whether a taxonomy is the optimal form of organization for natural images. Our experiments indicate that although taxonomies can organize images in a useful manner, more elaborate structures may be even better suited for this task.
Keywords :
image processing; trees (mathematics); unsupervised learning; visual databases; TAX; natural image organization; nested Chinese restaurant process; nonparametric Bayesian model; tree-shaped taxonomy; unsupervised image collection organization; Data models; Image color analysis; Navigation; Organizations; Organizing; Taxonomy; Visualization; Taxonomy; clustering.; hierarchy;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
Conference_Location :
4/21/2011 12:00:00 AM
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2011.79
Filename :
5753900
Link To Document :
بازگشت