Title :
Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method
Author :
Stock, Andreas ; Neudorfer, Jonathan ; Riedlinger, Marc ; Pirrung, Georg ; Gassner, Gregor ; Schneider, Rudolf ; Roller, Sabine ; Munz, Claus-Dieter
Author_Institution :
Inst. of Aerodynamics & Gas Dynamics, Univ. of Stuttgart, Stuttgart, Germany
fDate :
7/1/2012 12:00:00 AM
Abstract :
Fast design codes for the simulation of the particle-field interaction in the interior of gyrotron resonators are available. They procure their rapidity by making strong physical simplifications and approximations, which are not known to be valid for many variations of the geometry and the operating setup. For the first time, we apply a fully electromagnetic (EM) transient 3-D high-order discontinuous Galerkin particle-in-cell method solving the complete self-consistent nonlinear Vlasov-Maxwell equations to simulate a 30-GHz high-power millimeter-wave gyrotron resonator without physical reductions. This is a computational expensive endeavor, which requires today´s high-performance computing capacity. However, this enables a detailed analysis of the EM field, the excited TE2,3 mode, the frequencies, and the azimuthal particle bunching in the beam. Therefrom, we present new insights into the complex particle-field interaction of the electron cyclotron maser instability transferring kinetic energy from the electron beam to the EM field.
Keywords :
Galerkin method; cyclotron masers; gyrotrons; particle beam bunching; plasma simulation; 3D high order discontinuous Galerkin particle-in-cell method; Galerkin based parallel particle-in-cell method; azimuthal particle bunching; electromagnetic transient; electron beam; electron cyclotron maser instability; frequency 30 GHz; high power millimeter wave gyrotron resonator; particle-field interaction; self consistent nonlinear Vlasov-Maxwell equations; three dimensional numerical simulation; Computational modeling; Cyclotrons; Gyrotrons; Mathematical model; Maxwell equations; Particle beams; Discontinuous Galerkin (DG); electron cyclotron maser (ECM); gyrotron resonator; high-order; numerical plasma simulation; particle-in-cell (PIC);
Journal_Title :
Plasma Science, IEEE Transactions on
Conference_Location :
5/15/2012 12:00:00 AM
DOI :
10.1109/TPS.2012.2195509