DocumentCode :
3561876
Title :
Training finite state machines to improve PCR primer design
Author :
Ashlock, Dan ; Wittrock, Andrew ; Wen, Tsui-Jung
Author_Institution :
Dept. of Math., Iowa State Univ., Ames, IA, USA
Volume :
1
fYear :
2002
Firstpage :
13
Lastpage :
18
Abstract :
We present preliminary results on training finite state machines (FSMs) as good/bad classifiers for polymerase chain reaction (PCR) primers. Novel features of the work presented include hybridization of multiple populations of FSMs and an incremental fitness function. The system presented here is a post-production add-on to a standard primer picking program intended to compensate for organism and lab specific factors
Keywords :
DNA; biology computing; finite state machines; learning (artificial intelligence); pattern classification; DNA; PCR primers; finite state machines; genetic mapping; hybridization; pattern classification; polymerase chain reaction; training data; Annealing; Automata; Bioinformatics; Computer science; DNA; Genetics; Mathematics; Organisms; Polymers; Sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on
Print_ISBN :
0-7803-7282-4
Type :
conf
DOI :
10.1109/CEC.2002.1006202
Filename :
1006202
Link To Document :
بازگشت