DocumentCode :
3567594
Title :
Modeling Synthesis Processes of Photocatalysts Using Symbolic Regression α-β
Author :
Gonzalez-Campos, G. ; Torres-Trevino, L.M. ; Luevano-Hipolito, E. ; Martinez-De La Cruz, A.
Author_Institution :
Fac. de Ingeniena Mec. y Electr., Univ. Autonoma de Nuevo Leon, San Nicolás de los Garza, Mexico
fYear :
2014
Firstpage :
174
Lastpage :
179
Abstract :
Symbolic regression is an application of genetic programming and is used for modeling different dynamic processes. Industrial processes problems have been solved using this technique. In this work a symbolic regression algorithm is used for modeling the synthesis process of the oxides Bi2MoO6 and V2O5 in order to provide a model. These oxides are used on heterogeneous photo catalysis. Genetic programming, artificial neural network and linear regression are compared with symbolic regression models using statistics metrics to evaluate them.
Keywords :
catalysis; chemical technology; genetic algorithms; photochemistry; artificial neural network; genetic programming; heterogeneous photocatalysis; industrial processes; linear regression; photocatalysts synthesis processes; statistics metrics; symbolic regression α-ß; Artificial neural networks; Data models; Genetic programming; Linear regression; Mathematical model; Sociology; Symbolic regression; genetic programming; industrial modeling; photocatalysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Artificial Intelligence (MICAI), 2014 13th Mexican International Conference on
Print_ISBN :
978-1-4673-7010-3
Type :
conf
DOI :
10.1109/MICAI.2014.33
Filename :
7222861
Link To Document :
بازگشت