Title :
CAD-based methods for thermal modeling of coolant loops and heat pipes
Author :
Johnson, David A. ; Baumann, Jane ; Cullimore, Brent
Author_Institution :
C&R Technol., Littleton, CO, USA
fDate :
6/24/1905 12:00:00 AM
Abstract :
As air cooling of electronics reaches the limits of its applicability, the next generation of cooling technology is likely to involve heat pipes and single- or two-phase coolant loops. These technologies are not suitable for analysis using 2D/3D computational fluid dynamics (CFD) software, and yet the geometric complexities of the thermal/structural models make network-style schematic modeling methods cumbersome. This paper describes CAD line-drawing methods to quickly generate 1D fluid models of heat pipes and coolant loops within a 3D thermal model. These arcs and lines can be attached intimately or via lineal contact or saddle resistances to plates and other surfaces, whether those surfaces are modeled using thermal finite difference methods (FDM) or finite element methods (FEM) or combinations of both. The fluid lines can also be manifolded and customized as needed to represent complex heat exchangers and plumbing arrangements. To demonstrate these concepts, two distinct examples are developed: a copper-water heat pipe, and an aluminum-ammonia loop heat pipe (LHP) with a serpentined condenser. A summary of the numerical requirements for system-level modeling of these devices is also provided.
Keywords :
cooling; electronic design automation; finite difference methods; finite element analysis; heat pipes; packaging; thermal analysis; thermal resistance; 1D fluid models; 3D thermal model; CAD-based methods; coolant loops; finite element methods; geometric complexities; heat pipes; line-drawing methods; lineal contact; saddle resistances; serpentined condenser; system-level modeling; thermal finite difference methods; thermal modeling; Computational fluid dynamics; Coolants; Electronics cooling; Finite difference methods; Finite element methods; Heat pumps; Refrigeration; Solid modeling; Spraying; Thermal conductivity;
Conference_Titel :
Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on
Print_ISBN :
0-7803-7152-6
DOI :
10.1109/ITHERM.2002.1012437