DocumentCode :
3568853
Title :
A diffusion LMS strategy for parameter estimation in noisy regressor applications
Author :
Abdolee, Reza ; Champagne, Benoit ; Sayed, Ali H.
Author_Institution :
Dept. of Elec. & Comp. Eng., McGill Univ., Montreal, QC, Canada
fYear :
2012
Firstpage :
749
Lastpage :
753
Abstract :
We study distributed least-mean square (LMS) estimation problems over adaptive networks, where nodes cooperatively work to estimate and track common parameters of an unknown system. We consider a scenario where the input and output response signals of the unknown system are both contaminated by measurement noise. In this case, if standard distributed estimation is performed without considering the effect of regression noise, then the resulting parameter estimates will be biased. To resolve this problem, we propose a distributed LMS algorithm that achieves asymptotically unbiased estimates via diffusion adaptation. We analyze the performance of the proposed algorithm and provide computer experiments to illustrate its behavior.
Keywords :
filtering theory; least mean squares methods; parameter estimation; regression analysis; signal processing; adaptive networks; diffusion LMS estimation strategy; diffusion adaptation; distributed least-mean square estimation problems; input-output response signals; measurement noise; noisy regressor applications; parameter estimation; stand-alone LMS filtering; standard distributed estimation; track common parameters; Estimation; Least squares approximation; Manganese; Noise; Noise measurement; Signal processing algorithms; Vectors; bias-compensated LMS; cooperative processing; diffusion adaptation; distributed estimation; noisy regressor;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European
ISSN :
2219-5491
Print_ISBN :
978-1-4673-1068-0
Type :
conf
Filename :
6334114
Link To Document :
بازگشت