DocumentCode :
3571083
Title :
Correspondence between variational methods and Hidden Markov Models
Author :
Ziehn, J. ; Ruf, M. ; Rosenhahn, B. ; Willersinn, D. ; Beyerer, J. ; Gotzig, H.
Author_Institution :
Fraunhofer IOSB, Karlsruhe, Germany
fYear :
2015
Firstpage :
380
Lastpage :
385
Abstract :
This paper establishes a duality between the calculus of variations, an increasingly common method for trajectory planning, and Hidden Markov Models (HMMs), a common probabilistic graphical model with applications in artificial intelligence and machine learning. This duality allows findings from each field to be applied to the other, namely providing an efficient and robust global optimization tool and machine learning algorithms for variational problems, and fast local solution methods for large state-space HMMs.
Keywords :
hidden Markov models; intelligent transportation systems; learning (artificial intelligence); optimisation; path planning; variational techniques; artificial intelligence; calculus of variations; duality; fast local solution methods; hidden Markov models; large state-space HMM; machine learning algorithms; probabilistic graphical model; robust global optimization tool; trajectory planning; variational problems; Calculus; Hidden Markov models; Markov processes; Optimization; Planning; Trajectory; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Vehicles Symposium (IV), 2015 IEEE
Type :
conf
DOI :
10.1109/IVS.2015.7225715
Filename :
7225715
Link To Document :
بازگشت