Title :
On mechanical control systems with nonholonomic constraints and symmetries
Author :
Bullo, F. Rancesco ; Zefran, Milos
Author_Institution :
Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
fDate :
6/24/1905 12:00:00 AM
Abstract :
This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and the affine connection describing a class of Lagrangian systems. We consider mechanical systems endowed with symmetries and subject to nonholonomic constraints and external forces. This method is demonstrated on two robotic locomotion mechanisms known as the snake board and the roller racer. The resulting coordinate representations are compact and lead to straightforward proofs of various controllability results.
Keywords :
computational complexity; controllability; mobile robots; symmetry; Lagrangian systems; computationally efficient method; coordinate representations; mechanical control systems; nonholonomic constraints; robotic locomotion mechanisms; roller racer; snake; symmetries; Algorithm design and analysis; Control systems; Controllability; Equations; Force control; Lagrangian functions; Motion analysis; Motion control; Robot kinematics; Tensile stress;
Conference_Titel :
Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on
Print_ISBN :
0-7803-7272-7
DOI :
10.1109/ROBOT.2002.1014793