Title : 
Implicit h type finite-element error estimator for the vector helmholtz equation
         
        
            Author : 
Losch, Markus ; Farle, Ortwin ; Baltes, Rolf ; Dyczij-Edlinger, Romanus
         
        
            Author_Institution : 
Dept. for Electromagn. Theor., Saarland Univ., Saarbrucken, Germany
         
        
        
        
        
            Abstract : 
A dual-corrected, goal-oriented error estimator is presented. While existing methods employ p hierarchical basis functions for enriching the FE space for the dual problem, the present method uses hierarchichal h refinement, based on a hanging-variables framework. The paper emphasizes the importance of enriching the gradient subspace. Numerical results demonstrate that the proposed method restores optimal rates of convergence even in presence of singularities.
         
        
            Keywords : 
Helmholtz equations; error analysis; finite element analysis; gradient methods; FE space; dual problem; dual-corrected goal-oriented error estimator; gradient subspace; hanging-variable framework; hierarchichal h refinement; implicit h type finite element error estimator; p hierarchical basis functions; vector Helmholtz equation; Convergence; Iron; Magnetic domains; Stripline; Surface impedance; Surface waves; Vectors;
         
        
        
        
            Conference_Titel : 
Computational Electromagnetics (ICCEM), 2015 IEEE International Conference on
         
        
        
            DOI : 
10.1109/COMPEM.2015.7052653