Title :
A novel min-max feature value based neural architecture and learning algorithm for classification of microcalcifications
Author :
Verma, Brijesh ; Panchal, Rinku ; Kumar, Kuldeep
Author_Institution :
Sch. of Inf. Technol., Griffith Univ., Australia
Abstract :
The paper proposes a novel min-max feature value based neural architecture and learning algorithm for classification of microcalcification patterns in digital mammograms. The neural architecture has a single hidden layer and it has a fixed number of hidden units and outputs. One class is represented by three hidden units and an output. The suspicious areas represented by chain code, are extracted from digital mammograms. The feature values are extracted for benign and malignant microcalcifications. A set of min, average and max values for every input feature is defined and assigned to the weights between input and hidden layer. The weights of the output layer are calculated using least squares methods or assigned in such a way that it maximizes the output value for only one class. Many experiments were conducted on a benchmark database of digital mammograms and comparative results are included in this paper.
Keywords :
feature extraction; learning (artificial intelligence); least mean squares methods; mammography; neural net architecture; pattern classification; benchmark database; chain code; digital mammogram; feature value extraction; hidden neuron layer; hidden neuron output; hidden neuron unit; least squares method; malignant microcalcification; microcalcification patterns classification; minmax feature value based and learning algorithm; minmax feature value based neural architecture; Backpropagation; Bonding; Breast cancer; Cancer detection; Classification algorithms; Feature extraction; Image processing; Information technology; Neural networks; Wavelet transforms;
Conference_Titel :
Neural Networks, 2003. Proceedings of the International Joint Conference on
Print_ISBN :
0-7803-7898-9
DOI :
10.1109/IJCNN.2003.1223720