DocumentCode :
3573940
Title :
Maximum likelihood based multi-innovation stochastic gradient estimation for controlled autoregressive ARMA systems using the data filtering technique
Author :
Feiyan Chen ; Feng Ding
Author_Institution :
Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
fYear :
2014
Firstpage :
5993
Lastpage :
5998
Abstract :
This paper considers parameter estimation problems of a controlled autoregressive ARMA system. We decompose this system into two subsystems, use the data filtering technique to derive a maximum likelihood multi-innovation stochastic gradient algorithm. The simulation results show that the proposed algorithm has a higher computational efficiency than the maximum likelihood gradient algorithm and the filtering-based maximum likelihood stochastic gradient algorithm.
Keywords :
autoregressive moving average processes; estimation theory; filtering theory; gradient methods; maximum likelihood sequence estimation; parameter estimation; computational efficiency; controlled autoregressive ARMA system; data filtering technique; filtering-based maximum likelihood stochastic gradient algorithm; maximum likelihood based multiinnovation stochastic gradient estimation; maximum likelihood gradient algorithm; maximum likelihood multiinnovation stochastic gradient algorithm; parameter estimation; Computational modeling; Mathematical model; Maximum likelihood estimation; Parameter estimation; Signal processing algorithms; Stochastic processes; Vectors; Filtering; Maximum likelihood; Parameter estimation; Stochastic gradient;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation (WCICA), 2014 11th World Congress on
Type :
conf
DOI :
10.1109/WCICA.2014.7053747
Filename :
7053747
Link To Document :
بازگشت