DocumentCode :
3580174
Title :
Sample-data adaptive iterative learning control for a class of unknown nonlinear systems
Author :
Chiang-Ju Chien ; Ying-Chung Wang ; Ronghu Chi
Author_Institution :
Dept. of Electron. Eng., Huafan Univ., Taipei, Taiwan
fYear :
2014
Firstpage :
1461
Lastpage :
1466
Abstract :
Using a technique of sampled-data transformation for differentiation and integration, a sampled-data adaptive iterative learning control is presented for a class of nonlinear systems. The main control structure is designed by a fuzzy system used as a function approximator to compensate for an unknown certainty equivalent controller. The robustness problem due to function approximation error and input disturbance is solved by a technique of time-varying boundary layer which is utilized to construct an auxiliary error function for adaptive law design. Stability and convergence of the learning system is proved via a Lyapunov-like analysis if the adaptation gains satisfy a convergence condition. Since the convergence condition depends on the upper bound of system unknown input/output coupling function, an identifier based on fuzzy system design is further proposed to estimate the unknown bound. The adaptive laws for the fuzzy parameters are investigated to guarantee that identification error will asymptotically converge to zero. Finally, a numerical example is given to demonstrate the effectiveness of the iterative learning control system.
Keywords :
adaptive control; asymptotic stability; control system synthesis; convergence of numerical methods; differentiation; function approximation; fuzzy systems; integration; iterative learning control; learning systems; nonlinear control systems; robust control; sampled data systems; time-varying systems; Lyapunov-like analysis; adaptive law design; auxiliary error function; control structure design; convergence condition; differentiation; function approximator error; fuzzy parameters; fuzzy system; fuzzy system design; identification error; input disturbance; integration; robustness problem; sample-data adaptive iterative learning control system; sampled-data transformation; stability; system unknown input-output coupling function; time-varying boundary layer; unknown certainty equivalent controller; unknown nonlinear systems; Convergence; Function approximation; Fuzzy systems; Nonlinear systems; Trajectory; Upper bound; Vectors; Adaptive Control; Fuzzy System; Identifier; Iterative Learning Control; Sampled-data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on
Type :
conf
DOI :
10.1109/ICARCV.2014.7064531
Filename :
7064531
Link To Document :
بازگشت