Title :
Renewable energy-harvested sensor systems for air quality monitoring
Author :
Touati, Farid ; Legena, Claudio ; Galli, Alessio ; Crescini, Damiano ; Crescini, Paolo ; Mnaouer, Adel
Author_Institution :
Qatar Univ., Doha, Qatar
Abstract :
Wireless sensor networks (WSNs) devoted to environmental monitoring has preponderantly assumed the adoption of a portable and limited energy source, (e.g. lithium, alkaline, NiMH batteries), to support the sensor functionalities. The usage of environmental resources as energy booster is now rising up as a workable energy source dedicated to embedded and wireless computing systems where manual replacement of hundreds or even thousands of batteries on a regular basis is not practical. Consequently, substantial research efforts have been spent on designing energy-efficient smart sensor nodes and networks to maximize the lifetime of WSNs. However, in air quality monitoring systems sensors are required to operate for much longer durations (like years or even decades) after they are deployed. Following the above approach this paper presents SENNO (SENsor NOde), a renewable energy-harvested sensor node that intelligently manages energy transfer for continuous operation without human intervention during air quality monitoring. This paper discusses the challenges of designing an autonomous system powered by ambient energy harvesting. Preliminary results show that, the presented approach could effectively report and trace air quality levels.
Keywords :
air pollution; air quality; atmospheric measuring apparatus; energy harvesting; environmental monitoring (geophysics); gas sensors; intelligent sensors; wireless sensor networks; NiMH battery; SENNO; air quality monitoring system sensor; alkaline battery; ambient energy harvesting; energy booster; energy transfer; energy-efficient smart sensor node; environmental monitoring; lithium battery; renewable energy-harvested sensor node; renewable energy-harvested sensor systems; wireless sensor networks; workable energy source; Batteries; Energy harvesting; Monitoring; Power demand; Temperature sensors; Wireless communication; Wireless sensor networks; air monitoring; autonomous systems; gas sensors; power harvesting; wireless sensor networks;
Conference_Titel :
Microelectronics (ICM), 2014 26th International Conference on
DOI :
10.1109/ICM.2014.7071831