DocumentCode :
35861
Title :
Soil-Moisture Estimation From X-Band Data Using Tikhonov Regularization and Neural Net
Author :
Kseneman, M. ; Gleich, Dusan
Author_Institution :
Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia
Volume :
51
Issue :
7
fYear :
2013
fDate :
Jul-13
Firstpage :
3885
Lastpage :
3898
Abstract :
This paper introduces soil-moisture parameter retrieval using high-resolution vertically polarized (VV) Spotlight TerraSAR-X data. The soil-moisture estimation of bare and vegetated areas is considered by using volumetric scattering, which is modeled with a bare-soil component and a component reflecting vegetation. The unknown coefficients of the soil-moisture model are estimated using the Tikhonov regularization scheme. A neural network is used in order to distinguish volumetric scattering from all the other types of scattering. The estimated volumetric-soil-moisture parameters are further enhanced by using a supervised feedforward backpropagation neural network. The proposed algorithm based on the Tikhonov regularization scheme, in combination with neural networks, provides good results for estimating volumetric-soil-moisture in an area covered with a small vegetation canopy.
Keywords :
backpropagation; feedforward neural nets; geophysical image processing; soil; vegetation; vegetation mapping; Tikhonov regularization scheme; X-band data; bare areas; bare-soil component; component reflecting vegetation; estimated volumetric-soil-moisture parameters; high-resolution vertically polarized Spotlight TerraSAR-X data; small vegetation canopy; soil-moisture estimation; soil-moisture model; soil-moisture parameter retrieval; supervised feedforward backpropagation neural network; vegetated areas; volumetric scattering; Estimation; Mathematical model; Radar; Scattering; Soil; Soil measurements; Vegetation mapping; Feedforward backpropagation (FFBP) neural network; TerraSAR-X; self-organizing maps (SOMs); semiempirical models; soil-moisture estimation;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2012.2228486
Filename :
6423894
Link To Document :
بازگشت