Title :
A recursive way for sparse reconstruction of parametric spaces
Author :
Teke, Oguzhan ; Gurbuz, Ali Cafer ; Arikan, Orhan
Author_Institution :
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
Abstract :
A novel recursive framework for sparse reconstruction of continuous parameter spaces is proposed by adaptive partitioning and discretization of the parameter space together with expectation maximization type iterations. Any sparse solver or reconstruction technique can be used within the proposed recursive framework. Experimental results show that proposed technique improves the parameter estimation performance of classical sparse solvers while achieving Cramér-Rao lower bound on the tested frequency estimation problem.
Keywords :
expectation-maximisation algorithm; frequency estimation; signal reconstruction; Cramér-Rao lower bound; adaptive discretization; adaptive partitioning; classical sparse solvers; continuous parameter spaces; expectation maximization type iterations; frequency estimation problem; parameter estimation performance; parameter space; recursive framework; sparse reconstruction technique; sparse solver; Compressed sensing; Dictionaries; Estimation; Frequency estimation; Signal to noise ratio; Sparse matrices; Compressive sensing; basis mismatch; off-grid targets; recursive solver; sparse reconstruction;
Conference_Titel :
Signals, Systems and Computers, 2014 48th Asilomar Conference on
Print_ISBN :
978-1-4799-8295-0
DOI :
10.1109/ACSSC.2014.7094524