• DocumentCode
    358904
  • Title

    SPSA in noise free optimization

  • Author

    Gerencsér, László ; Vágó, Zsuzsanna

  • Author_Institution
    Comput. & Autom. Inst., Hungarian Acad. of Sci., Budapest, Hungary
  • Volume
    5
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    3284
  • Abstract
    The SPSA (simultaneous perturbation stochastic approximation) method for function minimization developed in Spall (1992) is analyzed for optimization problems without measurement noise. We prove the result that under appropriate technical conditions the estimator sequence converges to the optimum with geometric rate with probability 1. Numerical experiments support the conjecture that the top Lyapunov-exponent defined in terms of the SPSA method is smaller than the Lyapunov-exponent of its deterministic counterpart. We conclude that randomization improves convergence rate while dramatically reducing the number of function evaluations
  • Keywords
    approximation theory; convergence; optimisation; probability; recursive estimation; convergence rate; estimator sequence; function minimization; noise free optimization; randomization; simultaneous perturbation stochastic approximation; top Lyapunov-exponent; Automation; Convergence; Estimation error; Measurement errors; Minimization methods; Noise measurement; Optimization methods; Recursive estimation; Stochastic processes; Stochastic resonance;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2000. Proceedings of the 2000
  • Conference_Location
    Chicago, IL
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-5519-9
  • Type

    conf

  • DOI
    10.1109/ACC.2000.879172
  • Filename
    879172