DocumentCode :
3590088
Title :
On Constacyclic codes over ℤpm
Author :
Charkani, Mohammed Elhassani ; Kabore, Joel
Author_Institution :
Dept. of Math., Fac. of Sci., Univ. Sidi Med Ben Abdellah, Atlas-Fez, Morocco
fYear :
2014
Firstpage :
55
Lastpage :
58
Abstract :
Let p be a prime number, m ≥ 2 a positive integer, and λ a unit of R = ℤp(m), the ring of integers modulo pm. Let N = pkn with gcd(p, n) = 1. In this work, we give a simple and short proof that the quotient ring R[X]/ <; XN - (1 + λp) > is a principal ring. This allow us to study (1 + λp)-constacyclic codes of arbitrary length and give a characterization of self-dual (1 + λp)-constacyclic codes over ℤp(m).
Keywords :
cyclic codes; dual codes; constacyclic codes; positive integer; quotient ring; self-dual codes; IEL; Chain ring; Constacyclic codes; Dual codes; Selfdual codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Codes, Cryptography and Communication Systems (WCCCS), 2014 5th Workshop on
Print_ISBN :
978-1-4799-7053-7
Type :
conf
DOI :
10.1109/WCCCS.2014.7107919
Filename :
7107919
Link To Document :
بازگشت