Title :
A reversible jump sampler for polynomial-phase signals
Author :
Theys, C?©line ; Vieira, Michelle ; Alengrin, G?©rard
Author_Institution :
CNRS, Nice, France
Abstract :
We use reversible jump Markov chain Monte Carlo (MCMC) methods to address the problem of order and parameters estimation of noisy polynomial-phase signals within a Bayesian framework. As posterior distributions of the parameters are not tractable, MCMC methods are used to simulate them. Efficient model jumping is achieved by proposing the model space moves from the conditional density of the polynomial coefficients, estimated with the “one variable at a time” Metropolis Hasting algorithm. This algorithm provides simultaneous order and parameters estimation from simulated marginal posterior distributions. Results on simulated data are given and discussed
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; digital simulation; noise; parameter estimation; polynomials; signal sampling; Bayesian framework; MCMC methods; Markov chain Monte Carlo methods; Metropolis Hasting algorithm; conditional density; model jumping; model space; noisy polynomial-phase signals; order estimation; parameter estimation; polynomial coefficients; posterior distributions; reversible jump sampler; simulated data; simulated marginal posterior distributions; Bayesian methods; Computational modeling; Distributed computing; Gaussian noise; Monte Carlo methods; Parameter estimation; Phase noise; Polynomials; Probability; Radar;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
Print_ISBN :
0-7803-5041-3
DOI :
10.1109/ICASSP.1999.758278