DocumentCode :
3593127
Title :
A New Mollification Method for Numerical Differentiation of 2D Periodic Functions
Author :
Zhao, Zhenyu ; Meng, Zehong ; Xu, Li ; Liu, Junfeng
Author_Institution :
Coll. of Sci., Guangdong Ocean Univ., Zhanjiang, China
Volume :
1
fYear :
2009
Firstpage :
205
Lastpage :
207
Abstract :
In this paper, we present a new method for numerical differentiation of bivariate periodic functions when a set of noisy data is given. TSVD is chosen as the needed regularization technique. It turns out the new method coincides with some type of truncated Fourier series approach. A numerical example is also given to show the efficiency of the method.
Keywords :
Fourier series; differentiation; 2D periodic function; bivariate periodic function; mollification method; noisy data; numerical differentiation; regularization technique; truncated Fourier series approach; Business; Convergence; Educational institutions; Finance; Fourier series; Knowledge engineering; Mathematics; Oceans; Optimization methods; Statistics; TSVD method; ill-posed problem; mollification method; numerical differentiation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on
Print_ISBN :
978-0-7695-3605-7
Type :
conf
DOI :
10.1109/CSO.2009.174
Filename :
5193675
Link To Document :
بازگشت