DocumentCode :
3599821
Title :
Face recognition based on double complementary space and multi-decision classification
Author :
Fuji Ren ; Yanqiu Li ; Liangfeng Xu ; Min Hu ; Xiaohua Wang
Author_Institution :
Affective Comput. & Adv. Intell. Machines Anhui Key Lab., Hefei Univ. of Technol., Hefei, China
fYear :
2014
Firstpage :
97
Lastpage :
102
Abstract :
In order to overcome the one-sidedness and limitations of a single subspace in feature extraction and classification, we propose a face recognition method that extracts features in double complementary space and utilize multi-decision for classification. In the feature extraction stage, we use ICA and LPE algorithm as the first layer in complementary space to extract global and local features of the face images. Then, for the purpose of solving the problem that features extracted by ICA are lack of classification information, we further extract classification information from the independent features extracted by ICA on the condition that the FLDA and DCV algorithm are used as the second layer in the complementary space. In the classification stage, the test samples are firstly projected to the independent subspace. After that, projected the samples which are difficult to identify to the LPE space and reclassified them. Finally, the results are been determined comprehensively. Experimental results on ORL database show that the proposed method can effectively improve the recognition rate.
Keywords :
face recognition; feature extraction; image classification; independent component analysis; DCV algorithm; FLDA algorithm; ICA algorithm; LPE algorithm; double complementary space; face recognition; feature classification; feature extraction; multidecision classification; Classification algorithms; Data mining; Databases; Entropy; Face; Face recognition; Feature extraction; algorithms; complementary space; face recognition; multi-decision classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing and Intelligence Systems (CCIS), 2014 IEEE 3rd International Conference on
Print_ISBN :
978-1-4799-4720-1
Type :
conf
DOI :
10.1109/CCIS.2014.7175710
Filename :
7175710
Link To Document :
بازگشت