DocumentCode :
3601899
Title :
Sequential Randomized Algorithms for Robust Convex Optimization
Author :
Wada, Takayuki ; Fujisaki, Yasumasa
Author_Institution :
Dept. of Inf. & Phys. Sci., Osaka Univ., Suita, Japan
Volume :
60
Issue :
12
fYear :
2015
Firstpage :
3356
Lastpage :
3361
Abstract :
Sequential randomized algorithms are considered for robust convex optimization which minimizes a linear objective function subject to a parameter dependent convex constraint. Employing convex optimization and random sampling of parameter, these algorithms enable us to obtain a suboptimal solution within reasonable computational time. The suboptimal solution is feasible in a probabilistic sense and the suboptimal value belongs to an interval which contains the optimal value. The maximum of the interval is the optimal value of the robust convex optimization plus a specified tolerance. On the other hand, its minimum is the optimal value of the chance constrained optimization which is a probabilistic relaxation of the robust convex optimization, with high probability.
Keywords :
convex programming; probability; random processes; randomised algorithms; relaxation theory; sampling methods; chance constrained optimization; linear objective function; parameter dependent convex constraint; probabilistic relaxation; probability; random sampling; robust convex optimization; specified tolerance; suboptimal solution; suboptimal value; Convex functions; Ellipsoids; Linear programming; Optimization; Probabilistic logic; Robustness; Upper bound; Optimization algorithms; Randomized algorithms; Robust control; randomized algorithms; robust control;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2015.2423871
Filename :
7088564
Link To Document :
بازگشت